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INTRODUCTION

Parasitic diseases contribute significantly to the burden of in-
fectious diseases worldwide. While most infections and death

from parasitic diseases affect people in developing countries, they
also cause significant illness in developed countries (305). In 2004,
the WHO reported that diarrheal disease affected far more indi-
viduals than any other illness, even in regions that include high-
income countries (468). Several species of enteric protozoa are
associated with diarrheal illnesses in humans, with some causing
severe debilitating illness, especially in immunosuppressed popu-
lations (228, 382, 390, 406, 410). Protozoan-related morbidity and
mortality in both humans and animals worldwide are well docu-
mented (89, 94, 181, 222). Other protozoa have caused significant
amounts of disease in livestock, often associated with losses in
production, resulting in millions of dollars of losses in the food
and livestock industry (288, 383, 431, 437, 438). Other impacts of
parasitic infections include reduced worker productivity, reduced
commodity yields, effects on income, and impacts on food secu-
rity (70, 288). Several enteric protozoa cause zoonotic (transmit-
ted from animals to humans) illnesses associated with livestock
and domestic pets, and more recently, the prominence of open
farms and petting zoos has featured in several zoonotic outbreaks
and transmission to humans (55, 66, 146, 290, 340). Human-to-
animal transmission of parasites is also becoming an emerging
issue of public health and veterinary significance (89, 432). As
humans and their livestock move further into wildlife domains,

parasitic disease might represent a serious threat to wildlife, which
in turn may act as reservoirs and/or amplifiers of emerging and
exotic diseases for humans and their livestock (429, 432).

Much attention has been paid to enteric protozoa in human
infections in developing countries, where poor sanitary condi-
tions and the unavailability of effective water treatment have sus-
tained conditions for their transmission (21, 110, 178, 180, 278,
349, 410). Climate change is predicted to influence changes in
precipitation quantity, intensity, frequency, and duration and
subsequently affect environmental conditions that predispose de-
veloping countries to the transmission of waterborne disease
(181). Less focus has been placed on the impact of these changes in
more industrialized settings, presumably because of better health
standards. Therefore, estimation of the disease burden is often
complicated by a lack of reliable data as a result of underdiagnosis
and the lack of monitoring programs (288). However, despite the
lower prevalence of parasitic diseases in industrialized countries,
they may potentially result in a greater economic burden due to
higher income, medical, and treatment costs (438).

In many developed countries, only a few or no parasitic proto-
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zoa are included in operational surveillance systems, as the major
focus is on bacterial and viral infections. Where these systems
exist, they are used mainly as indicators for identifying outbreaks
of food-borne and waterborne diseases and in institutional set-
tings (72, 73, 231, 463, 476–478). However, evidence suggests that
while some enteric protozoa, such as Entamoeba spp., Cryptospo-
ridium, and Giardia, are isolated frequently from diarrheal pa-
tients in developing regions such as Asia and sub-Saharan Africa
(126, 284, 363), others, such as Blastocystis spp. and Dientamoeba
fragilis, are isolated mainly in developed countries (390; S. M.
Fletcher, Y. Li, D. Stark, and J. Ellis, presented at the Communi-
cable Disease Control Conference, Canberra, ACT, Australia,
2011). In developed settings, however, enteric protozoa are often
ignored as a cause of diarrhea due to better hygiene conditions. In
many cases, the sick person may not seek medical attention, and
even if he or she does, a stool specimen is not routinely requested
from persons with diarrheal illnesses (170, 357, 427, 446, 476). For
example, during an outbreak of gastroenteritis linked to a water
supply in Austria in 2006, there was no identification of patho-
genic microorganisms in stool samples from affected patients, and
no parasite etiology was considered in this large outbreak (269).
This could have been due to the fact that test requests by general
practitioners may not have complied with existing knowledge of
the gastroenteritis etiology at that time (427, 446).

In industrialized settings, the prevalence of protozoan illnesses
is frequently captured by several surveillance systems, including
outbreak surveillance, passive and active surveillance of notifiable
diseases, and laboratory-based surveillance (258, 260, 298). Esti-
mates of parasite prevalence are sometimes affected by the lack of
sensitive diagnostic techniques to detect them in clinical speci-
mens, while carrier stages and subclinical infections are often not
diagnosed (236, 460). The development of technologies that can
simultaneously detect several protozoa in stool is desirable in in-
dustrialized settings (386, 427). This includes the development of
molecular markers for the detection of outbreaks, for source at-
tribution, and to estimate their contribution to the overall burden
of infectious diseases (236, 318, 426, 463). Current opinion sug-
gests that molecular techniques are the most promising methods
for the sensitive, accurate, and simultaneous detection of proto-
zoan parasites in comparison to conventional staining and mi-
croscopy methods (386, 387), with much benefit to the water in-
dustry and public health (7, 40, 47, 48, 375). Unfortunately,
molecular methods can be quite costly and labor-intensive and
thus are not used routinely for the detection of parasitic protozoa,
even in resource-rich settings (341). Much effort must now be
placed on developing inexpensive molecular tools for routine lab-
oratory applications in industrialized settings.

This review seeks to discuss the public health impact of com-
mon enteric protozoa associated with diarrheal illnesses in indus-
trialized settings. The role that protozoa play in human and ani-
mal infections is discussed, along with the implications of climate
change and the importance of water quality management to their
prevention and control. The main enteric protozoa considered of
public health significance and covered here are Cryptosporidium
spp., Giardia intestinalis, Entamoeba histolytica, Dientamoeba fra-
gilis, Cyclospora cayetanensis, Blastocystis spp., Cystoisospora belli,
and Balantidium coli. Two microsporidian species, Enterocytozoon
bieneusi and Encephalitozoon intestinalis, are also included.

Distribution in Developed Countries

One report (Fletcher et al., presented at the Communicable Dis-
ease Control Conference, Canberra, ACT, Australia, 2011) esti-
mated that an enteric pathogen is isolated in an average of 40.9%
(95% confidence interval [CI], 33.4 to 48.8%) of diarrheal cases in
developed countries, among which enteric parasites represent less
than 1% (95% CI, 1.1 to 3.5%) of cases. However, enteric para-
sites—mainly protozoa—are isolated from 1% to 65% of patients
with diarrhea in various settings. The relative prevalences of en-
teric protozoa reported in several developed countries in outbreak
and nonoutbreak settings among humans are reported in Table 1
(1, 11, 12, 24, 60, 85, 90, 96, 128, 144, 184, 192, 193, 204, 215, 225,
247, 248, 255, 264, 265, 301, 335, 355, 370, 395, 416, 417, 425, 442,
444, 452, 467). Giardia intestinalis (0.2% to 29.2% of cases), Cryp-
tosporidium spp. (0.1% to 9.1% of cases), Entamoeba spp. (0.2% to
12.5% of cases), and Cyclospora cayetanensis (0.2% to 4.3% of
cases) were the most common protozoa reported in developed
settings. The common protozoa, however, were rivalled in preva-
lence by Blastocystis spp. (0.4% to 18.1%) and D. fragilis (0.4% to
6.3%). Both have the potential to cause illness but are more fre-
quently associated with asymptomatic infection. Nevertheless, ev-
idence from the literature suggests that Blastocystis spp. and D.
fragilis have relatively high prevalences in developed settings (395;
Fletcher et al., presented at the Communicable Disease Control
Conference, Canberra, ACT, Australia, 2011). Infections are asso-
ciated with recent travel to developing regions (394), with immi-
grants and refugees (164, 273), and with domestic transmission
(387). The prevalence rates of D. fragilis vary widely, from 0.4% to
42%, and the incidence of this parasite was found to be second
only to that of Blastocystis spp. and of similar or greater magnitude
to those of the more commonly diagnosed parasites Giardia,
Cryptosporidium spp., and Entamoeba spp. in many developed
regions when diagnostic methods were implemented for these
species. Several reports have also identified D. fragilis as the most
common pathogenic protozoan found in stool when appropriate
diagnostic methods are used (389). It is therefore recommended
that both Blastocystis spp. and D. fragilis be considered in the dif-
ferential diagnosis of gastrointestinal infections in developed set-
tings (26).

Asymptomatic carriage of protozoan parasites is also common
in developed countries, as several types have been isolated from
healthy individuals without diarrhea (0.5% to 16.5%) (90, 301).
For example, about 90% of individuals infected with Entamoeba
are colonized by the nonpathogenic species Entamoeba dispar, and
as such, they are asymptomatic; this is true even for immunosup-
pressed populations (14, 385). Table 2 presents an epidemiologi-
cal summary of several protozoa that have been implicated in
human illnesses in developed countries, and examples of stained
enteric protozoa are shown in Fig. 1. Recommended treatment
regimens for enteric protozoa are presented in Table 3, based on
international standards (218, 390).

EPIDEMIOLOGY, DIAGNOSIS, AND TREATMENT

Cryptosporidium Species

Cryptosporidium was first recognized as an important cause of
infection in AIDS patients (410). It is now well recognized and
accounts for about 20% of diarrheal episodes in children in devel-
oping countries and up to 9% of episodes in developed settings
and causes a considerable amount of diarrheal illness in young
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farm animals worldwide (340, 473). The environmentally resis-
tant oocysts are fully sporulated when they are excreted in feces,
and therefore they are immediately infectious (116, 441, 477).
Infections are usually characterized by self-limiting diarrhea asso-
ciated with severe abdominal pain in both immunosuppressed
and immunocompetent persons, especially HIV-infected persons
and children worldwide (16, 116, 390). The duration of clinical
symptoms is highly dependent on the person’s immunological
competence (235). It is still an important cause of potentially life-
threatening diarrhea in HIV-infected patients with limited access
or poor compliance with highly active antiretroviral therapy
(HAART) (228, 326). Cryptosporidium spp. are of importance to
transplant patients, especially in regions where the organisms are

endemic, where they can cause life-threatening prolonged diar-
rhea, dehydration, and malabsorption in transplant recipients
(100). Species of Cryptosporidium and subtype families of Crypto-
sporidium hominis have been shown to induce different clinical
manifestations and have different potentials to cause outbreaks
(473). In developed countries, transmission occurs from person to
person, especially in day care settings and between men who have
sex with men (MSM), as well as through waterborne and zoonotic
infections (473). Cryptosporidium spp. have been identified as a
common cause of diarrhea in persons from developed countries
visiting less developed areas (343, 473, 474, 476). Animal models
have demonstrated the role of Cryptosporidium parvum in the for-
mation of polyps and adenocarcinoma lesions in the guts of dexa-
methasone (Dex)-treated severe combined immunodeficiency
(SCID) mice, suggesting the need to investigate whether a similar
C. parvum-induced gastrointestinal cancer occurs in humans (50–
52, 74, 459).

In developed countries, sporadic outbreaks due to fecal-oral
transmission have been reported among children attending play-
groups and day care centers and by ingestion of contaminated
salads, contaminated water supply, or recreational water, contact
with sick animals, swimming in public pools, and person-to-per-
son transmission (55, 66, 325, 340). Epidemiological variations
have been observed in the geographical, seasonal, and socioeco-
nomic effects of the distribution of Cryptosporidium spp. in hu-
mans that may influence the sources and routes of transmission
(473). Cryptosporidium spp. have a wide host range and cause
infections in humans, livestock, domestic pets, and wildlife,
among all four classes of vertebrates, and, most likely, in all mam-
malian species (55, 89, 290, 345, 441). Most animals are not in-
fected with human-pathogenic species and thus play no role in
zoonotic transmission of cryptosporidiosis. However, zoonotic
transmission from direct contact with infected animals or their

TABLE 2 Summary of the epidemiology of pathogenic protozoa associated with human illness

Parasite Disease symptom(s) Primary host(s) Mode(s) of transmission Susceptible individuals

Cryptosporidium spp. Diarrhea Humans, other mammals, and birds Oocysts in water and on uncooked
or undercooked food; person to
person; zoonotic

Animal handlers, travelers, MSM,
caterers, day care staff

Cyclospora cayetanensis Diarrhea Humans and other mammals Oocysts in water and on uncooked
or undercooked food; person to
person

Travelers to nonindustrialized countries
(South America); major food and
water outbreak risk

Giardia intestinalis Diarrhea, malabsorption Humans, other mammals, and birds Cysts in water and on uncooked or
undercooked food; person to
person; zoonotic

Young adults, MSM, day care staff

Entamoeba histolytica Dysentery, liver abscess Humans and other mammals Cysts in water and on uncooked or
undercooked food; person to
person; zoonotic

Immigrants/travelers to areas of
endemicity, MSM, HIV patients, and
institutionalized persons

Blastocystis sp. Abdominal pain and diarrhea Humans and other mammals Cysts in untreated or minimally
treated water and on uncooked
or undercooked food; person to
person; zoonotic

Anyone, especially in child care centers
or other institutional settings

Dientamoeba fragilis Diarrhea Humans Fecal-oral; uncertain Children and adults, both
immunocompetent and
immunosuppressed populations

Cystoisospora belli Diarrhea Humans Oocysts in contaminated water or
food; person to person

Travelers to nonindustrialized
countries, AIDS patients, and
indigenous populations (United
States)

Balantidium coli Diarrhea, dysentery Humans, pigs, nonhuman primates,
cats, rodents

Cysts in untreated or minimally
treated water and on uncooked
or undercooked food; person to
person; zoonotic

People living in close proximity to pigs,
travelers to nonindustrialized
countries (Southeast Asia, Western
Pacific Islands, rural South America)

Microsporidia Persistent diarrhea Humans and other mammals Ingestion of spores; person to
person; zoonotic

Immunosuppressed and HIV/AIDS
patients, immunocompetent
patients, travelers

FIG 1 Photomicrographs of six enteric protozoa. Plates 1 to 5 were stained
with a modified iron-hematoxylin stain (incorporating a carbol fuschin stain-
ing step). Plate 6 was a wet preparation. (1) Cryptosporidium oocysts; (2a)
Giardia intestinalis cysts; (2b) Giardia intestinalis trophozoite; (3a) Entamoeba
histolytica cyst; (3b) Entamoeba histolytica trophozoite; (4) Cyclospora cayet-
anensis oocysts; (5) Dientamoeba fragilis binucleated trophozoite; (6) Blasto-
cystis oocysts. Bars, 10 �m. (All graphics by Damien Stark.)
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feces (55, 89, 345, 476) or indirectly through the consumption of
contaminated water (63, 66, 327, 476) can occur.

The small size and subtle staining characteristics of Cryptospo-
ridium spp. have contributed to the difficulties of identifying these
parasites in routine stool preparations (116, 375). The diagnosis of
cryptosporidiosis is generally undertaken by identification of
oocysts in stool of the host/patient. Traditionally, the identifica-
tion of Cryptosporidium oocysts was based on microscopic exam-
ination (300, 330). However, the identification of morphological
characters of Cryptosporidium is unreliable and relatively time-
consuming, even with light microscopy (209). Staining and pres-
ervation methods have been used to enhance the sensitivity of
tests. Unfortunately, these do not identify species, and their ana-
lytical sensitivity can be poor, especially for samples containing
small numbers of oocysts (138, 253, 329). The modified Ziehl-
Neelsen technique (413) is used widely; however, one recent study
found that it was less sensitive than PCR (75.7%; 95% CI � 68.3 to
81.8%) but was highly specific (100%; 95% CI � 96.5 to 100%)
(56). Kinyoun’s acid-fast staining technique (102), modified
Sheather’s flotation technique (76, 294, 296), and the iron-hema-
toxylin staining technique (119) have also been described.

Antigen detection by immunoassays has been used widely in the
diagnosis of cryptosporidiosis, as these assays are thought to be
more sensitive than conventional staining and more effective in
cases where oocyst numbers are low (139, 141, 329). An evaluation
of the Meridian Premier Cryptosporidium test and the Alexon
ProSpecT Cryptosporidium microplate assay found that both sys-
tems performed according to the manufacturers’ values for sensi-

tivity and specificity (for the Meridian test, 91 and 99%, respec-
tively; and for the Alexon test, 97 and 100%, respectively) (139).
Highly rapid immunoassays have also been developed that can be
used with fresh, frozen, or unfixed human fecal specimens. For
example, the Biosite Diagnostics (San Diego, CA) Triage rapid
qualitative enzyme immunoassay (EIA) for the detection of Giar-
dia, E. histolytica/E. dispar, and Cryptosporidium antigens has been
demonstrated to have a 98.3% sensitivity and 99.7% sensitivity in
the detection of Cryptosporidium spp. from stool specimens (140).
A multicenter French study evaluated the sensitivity and specific-
ity of four immunochromatographic (ICT) assays and found that
RIDAQuick (mean sensitivity, 73.3%), Remel Xpect (mean sensi-
tivity, 74.1%), and ImmunoCard STAT (mean sensitivity, 73.3%)
were fairly sensitive for detecting C. parvum and C. hominis but
were very limited in detecting other Cryptosporidium spp. (3).
Fluorescence microscopy and direct fluorescent-antibody (DFA)
assay have been used with relatively high specificities (96 to 100%)
and sensitivities (98.5 to 100%) for the detection of Cryptospo-
ridium oocysts in clinical and environmental samples (139, 158,
209). However, the sensitivity and specificity of monoclonal anti-
body (MAb)-based DFA assays have been affected by different
factors, such as the purity of the Cryptosporidium antigen origi-
nally used to raise the MAb (139, 158, 209, 214, 329).

Molecular methods have been developed for the detection and
differentiation of Cryptosporidium spp. at the species/genotype
and subtype levels (9, 168, 290, 372, 386). These methods, includ-
ing a nested PCR (348), real-time PCR, multiplex real-time PCR,
reverse transcription– quantitative real-time PCR (372, 455), and

TABLE 3 Treatment options for infections with enteric protozoaa

Intestinal parasite or disease Antimicrobial therapy (dosing)

Blastocystis spp. Nitazoxanide (500 mg twice a day for 3 days)b

Cryptosporidium spp. Nitazoxanide (500 mg twice a day for 3–14 days); for AIDS-associated infections, include
HAART

Cyclospora cayetanensis Cotrimoxazole (TMP-SMX; 160 mg trimethoprim plus 800 mg sulfamethoxazole, twice a day for
7 days), pyrimethamine (50–75 mg daily) and leucovorin (5–10 mg daily), or ciprofloxacin
(500 mg twice a day); for non-AIDS patients receiving TMP-SMX, use 1 double-strength tablet
orally twice daily for 7–10 days; for AIDS patients receiving TMP-SMX, use 1 double-strength
tablet orally four times daily for 10 days, followed by twice a day for 3 weeks

Dientamoeba fragilis Iodoquinol (650 mg three times a day for 20 days), metronidazole (500–750 mg three times a day
for 10 days), or paromomycin (25–35 mg/kg of body weight/day for 7 days) (271); for
treatment failures, tetracycline (500 mg orally four times daily for 10 days) plus iodoquinol
(650 mg orally three times daily for 10 days)

Entamoeba histolytica invasive disease
(amoebic colitis, amoebic liver
abscess, or disseminated disease)

Luminal agent, i.e. paromomycin (8–12 mg/kg or 500 mg orally three times a day for 7 days) or
iodoquinol (650 mg orally three times a day for 20 days)

Entamoeba histolytica/E. dispar complex
intestinal disease

Paromomycin (8–12 mg/kg or 500 mg three times a day for 7 days) or iodoquinol (650 mg orally
three times a day for 20 days)

Giardia intestinalis Metronidazole (250 mg daily for 3 days), tinidazole (2-g single dose), or albendazole (200–400
mg twice a day for 5 days)

Cystoisospora belli Cotrimoxazole (160 mg trimethoprim plus 800 mg sulfamethoxazole, four times a day for 10
days) or ciprofloxacin (500 mg twice a day for 7 days); for non-AIDS patients receiving TMP-
SMX, use 1 double-strength tablet orally twice daily for 10 days; for AIDS patients receiving
TMP-SMX, use 1 double-strength tablet orally four times daily for 10 days, followed by twice a
day for 3 weeks

Microsporidia
E. bieneusic Fumagillin (20 mg three times a day for 14 days)
E. intestinalis Albendazole (400 mg twice a day for 28 days)

a Based on CDC guidelines (149, 218, 391).
b Treatment for Blastocystis spp. is considered controversial, but infection is eradicated by treatment.
c Albendazole is not very effective to eradicate infection but may alleviate symptoms. Fumagillin is effective but has serious side effects.
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multiplex tandem real-time PCR (386), have been used for iden-
tification of species in diarrheal stools in relatively short time
frames. More recently, an automated multiplex tandem PCR us-
ing a robotic platform to simultaneously detect Cryptosporidium
spp. and coinfecting diarrheal pathogens from human fecal
genomic samples was described. The assay was rapid (taking �2 h,
with �5 to 10 min of technical work following the extraction of
genomic DNA), and due to automation, data analysis required
little molecular biological expertise, making it well suited to vari-
ous diagnostic facilities and settings (e.g., hospitals or quarantine
facilities) (210). Other tools, based on the Cryptosporidium oocyst
wall protein (COWP) gene, have been used to amplify DNAs of C.
parvum, C. hominis, Cryptosporidium meleagridis, and species and
genotypes closely related to C. parvum (9, 242). However, it has
been suggested that these methods have limited usefulness in
genotyping Cryptosporidium spp. in animals because of their nar-
row specificity (342, 473). The disadvantage of some PCR tools is
that they are designed to detect the dominant Cryptosporidium
genotype in the specimen and require a substantial amount of
PCR product to be visible on an agarose gel, and when specific
genotyping and subtyping tools are used, they fail to detect con-
current infections with mixed Cryptosporidium species/genotypes
or fail to detect other divergent species/genotypes (168). New
methods such as reverse line blot (RLB) hybridization, isothermal
methods such as the loop-mediated isothermal amplification
method (319, 372), and nucleic acid sequence-based amplification
(NASBA) methods that amplify RNA from either RNA or DNA
templates also provide additional diagnostic platforms for the de-
tection of Cryptosporidium spp. (154, 372).

Cryptosporidiosis is usually self-limiting in immunocompetent
persons, requiring little or no treatment, but it is especially chal-
lenging to treat among high-risk immunosuppressed groups (39,
83). Nitazoxanide has proven effective in the treatment of immu-
nocompetent patients (133); however, a higher dosage and longer
duration of treatment have been indicated for immunosuppressed
patients (39, 129). Rehydration fluids and nutritional manage-
ment may be required for immunosuppressed persons with dehy-
dration (57, 83).

Dientamoeba fragilis

There has been much debate about the pathogenicity of Dientam-
oeba fragilis (26, 390). Unlike the case for other protozoa, a cyst
stage has not been demonstrated, and trophozoites degenerate
within hours of being passed in stool (26, 391–393). Although the
mode of transmission remains unknown, based on high rates of
coinfection with Enterobius vermicularis, it was suggested previ-
ously that infection occurs via the pinworm vector (25, 153, 191).
Recent studies have discounted this idea (229). However, high
rates of coinfection with other enteric pathogens and protozoa
suggest that transmission occurs directly via the fecal-oral route
(26, 191). Infection may be acute or chronic and has been reported
in both children and adults and both immunocompetent and im-
munosuppressed populations (26, 127, 361, 389, 392, 444). The
most common clinical symptoms include abdominal pain, persis-
tent diarrhea, loss of appetite, weight loss, and flatulence (22, 355,
389, 444). These symptoms are akin to those of irritable bowel
syndrome (IBS), so D. fragilis should be considered in the differ-
ential diagnosis of IBS (399). Dientamoeba fragilis infection also
presents with similar symptoms to those of Giardia infection and
is estimated to occur with a similar or greater prevalence to that of

Giardia infection in Belgium (444) and Australia (127, 355, 394,
395, 401). Dientamoeba fragilis trophozoites have been reported in
nonhuman primates, but the limited host range suggests that hu-
man infection may not involve transmission from other animal
species (396).

Traditional diagnosis relies on the microscopic detection of tro-
phozoites in fresh or fixed stool specimens. The demonstration of
the characteristic nuclear structure of D. fragilis needed for a de-
finitive diagnosis cannot be achieved with unstained fecal material
(392); as such, prompt fixation and permanent staining are nec-
essary for definitive diagnosis (355, 388, 391). Microscopy of fixed
smears with permanent staining (modified iron-hematoxylin or
trichrome staining) (127, 393, 403) is considered the gold stan-
dard for diagnosis of D. fragilis infection, but this method is time-
consuming and relatively insensitive compared to molecular
methods (391). More recently, diagnostic tests based on various
conventional and real-time PCRs to detect the small-subunit
(SSU) rRNA gene of D. fragilis have been developed to facilitate
rapid, sensitive, and specific diagnosis in fresh stools (386, 388,
401, 455), and the successful culture and cryopreservation of via-
ble D. fragilis trophozoites from clinical specimens have been
achieved (27, 355). It was demonstrated that when microscopy is
combined with other methods, the success of detection of D. fra-
gilis is increased significantly (26, 386, 388). However, while mo-
lecular methods are more sensitive than microscopy and staining,
many of the necessary products are not commercially available
and the methods are not employed routinely, even in developed
countries.

Treatment is recommended in symptomatic patients and
asymptomatic family members to prevent reinfection (153, 444).
Various antimicrobial therapies have resulted in the successful
clearance of D. fragilis and total resolution of gastrointestinal
symptoms in infected patients (152, 387, 445). Paromomycin, sec-
nidazole, iodoquinol, tetracycline, ornidazole, and metronidazole
have been used successfully to treat D. fragilis infections (22, 152,
305, 445). However, there is emerging evidence of treatment fail-
ures of metronidazole among D. fragilis isolates, suggesting the
increased need for combination therapy for these protozoa (22,
389). Combination therapy has been effective in the complete
eradication of the parasite and in resolution of symptoms (387,
389).

Entamoeba Species

Six species of the genus Entamoeba have been described in hu-
mans, including Entamoeba histolytica, Entamoeba dispar, Ent-
amoeba moshkovskii, Entamoeba poleki (also called Entamoeba
chattoni), Entamoeba coli, and Entamoeba hartmanii. Among
these, E. histolytica is the only pathogenic species (201, 236, 351).
Improvements in the understanding of the biochemical, immu-
nological, and genetic differences of the members of this genus
have resulted in the confirmation of three species, E. histolytica, E.
dispar, and E. moshkovskii, that are morphologically identical in
both their cyst and trophozoite stages (41, 169). The vast majority
(about 90%) of individuals infected with Entamoeba spp. are col-
onized by the nonpathogenic strain E. dispar (324, 385). In devel-
oped countries, infections of E. histolytica (a true pathogen) are
largely confined to immigrants from or travelers to areas of ende-
micity, MSM, HIV-infected patients, and institutionalized popu-
lations (164, 174, 315). The WHO reports that approximately 500
million people worldwide are infected annually with E. histolytica,
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resulting in symptomatic illnesses and death in about 50 million
and 100,000 persons, respectively (470). However, it is believed
that since 90% (450 million) of infections are due to E. dispar,
while 10% (or 50 million) are infections with E. histolytica, the
worldwide incidence of invasive disease is more likely to be 5 mil-
lion cases annually, with global mortality still at 100,000 per an-
num (201). Approximately 4 to 10% of carriers infected with E.
histolytica develop clinical disease within a year, and amoebic dys-
entery is considered the third leading cause of death from parasitic
disease worldwide (178, 280, 385). Entamoeba histolytica causes a
range of disease manifestations, including (i) dysentery or dysen-
teric syndrome, characterized by small volumes of bloody, mu-
coid stools without fecal leukocytes; (ii) amoebic colitis, charac-
terized by ulcerations of the colonic mucosa with typical flask-
shaped abscesses; (iii) amoeboma, the formation of a fibrotic mass
in the intestinal wall; and (iv) invasive disease, resulting in amoe-
bic abscesses in the brain, lung, or liver (84, 315, 324, 449). Amoe-
bic brain abscess occurs when Entamoeba histolytica trophozoites
travel to extraintestinal tissues through the bloodstream, invading
the central nervous system and producing amoebic brain ab-
scesses that are frequently lethal (257). Other rare forms of amoe-
biasis have been reported, including cutaneous amoebiasis
(amoebiasis cutis), arising as a complication of amoebic dysentery
(232, 323). This usually results from contamination of damaged
skin or continuous contact with exudates containing virulent tro-
phozoites that stick to the traumatized skin, such as in the perianal
or perigenital area, resulting in lysis of the skin and subcutaneous
tissue and, subsequently, ulceration and necrosis (36, 323, 454).

While asymptomatic E. histolytica infections are equally distrib-
uted between the genders, invasive disease is more common in
men (which may be due to a male-related susceptibility to invasive
disease). Higher rates of carriage have been observed in HIV-in-
fected MSM in the Asia Pacific region (194, 203, 280, 400). Pa-
tients with amoebic colitis present with a gradual onset of bloody
or profuse watery diarrhea and abdominal pain and tenderness
(324, 385). Symptoms may last for several weeks, and fulminant
necrotizing colitis, the most severe form of intestinal disease, is
often fatal (174, 324, 379). In children, �40% of patients present
with fever and rectal bleeding without diarrhea. Some patients
develop fulminant amoebic colitis, with profuse bloody diarrhea,
fever, pronounced leucocytosis, and widespread abdominal pain,
often with peritoneal signs (280, 399).

The virulence of pathogenic E. histolytica is based on its ability
to secrete enzymes and proteases that contribute to the invasion of
the epithelial cells penetrating the intestinal mucosa and to degra-
dation of the extracellular matrix proteins and subsequently to
interfere with the host’s humoral immune response (14, 315).
More recently, the emergence of clear roles for human and para-
site genetics and environmental factors in the virulence of E. his-
tolytica has increased our understanding of infections. It is
thought that some persons are genetically resistant to infection,
while malnourished children are more susceptible, and a poly-
morphism in the leptin receptor increases susceptibility to amoe-
biasis in both adults and children (14, 277, 332). The evidence
suggests that not all strains are capable of causing liver abscess, and
the observed higher incidence in men may be a result of gender-
based differences in the complement system (379). For example,
higher gamma interferon and functional natural killer T cell levels
in females might underlie their resistance to liver abscess (280,
332). Based on the many presentations of amoebiasis, a high level

of clinical suspicion is necessary for the early diagnosis of invasive
and extraintestinal amoebiasis (221, 454). The specific diagnosis
of E. histolytica infection is important in order to minimize undue
treatment of individuals infected with nonpathogenic species of
Entamoeba (131).

Diagnosis is difficult based on the fact that the pathogenic spe-
cies E. histolytica is morphologically identical to the nonpatho-
genic species E. dispar and E. moshkovskii; hence, microscopy is
generally considered insufficient for differentiation of these spe-
cies (397). Various methods are employed in the diagnosis of Ent-
amoeba. In many countries, microscopy is widely used for proto-
zoan identification (131, 204, 249). Microscopic techniques
utilized in the clinical laboratory include the screening of wet
preparations, concentrated samples, and permanently stained
smears for the identification of E. histolytica/E. dispar/E. moshk-
ovskii in feces (131). The CDC recommends that in order to max-
imize the recovery of cysts, stool samples in formalin or other
fixatives should be concentrated prior to microscopic examina-
tion (49). Wet mount preparations and trichrome-stained smears
of stool specimens are routinely used for identification of E. his-
tolytica/E. dispar (49). Various fixatives utilized for the preserva-
tion of the morphology of the parasites can be used in conjunction
with various stains. The pathogenic species E. histolytica can
sometimes be differentiated from the nonpathogenic, morpho-
logically identical species by microscopy on the basis of ingested
red blood cells within the cytoplasm of the trophozoites; however,
this phenomenon does not occur commonly and is rarely seen in
clinical samples (49, 131). Therefore, when a definitive diagnosis
is not possible via microscopy, the presence of the E. histolytica/E.
dispar/E. moshkovskii complex should be reported (49). Micros-
copy is less reliable at identifying Entamoeba species than culture
or antigen-based and molecular tests (179, 410).

While cultivation is more sensitive than microscopy and isoen-
zyme analysis can effectively distinguish between E. dispar and E.
histolytica, these methods are time-consuming, are not cost-effec-
tive, and are not routinely utilized by most diagnostic laboratories
(132, 177). EIA kits are commercially available that detect E. his-
tolytica only, while others detect both E. histolytica and E. dispar
(49, 131, 460). A rapid ICT assay is available that detects antigens
of E. histolytica and E. dispar in stool; however, this assay does not
distinguish between E. histolytica and E. dispar (49). This assay
also detects antigens of Giardia and Cryptosporidium. Borderline
positive results and questionable negative results obtained by this
technique should be confirmed further by additional testing. This
assay is quick and easy to perform, and no special equipment is
needed (49). EIAs and rapid ICT tests require the use of fresh or
frozen stool specimens and cannot be used with the majority of
preserved specimens because antigens are lost during the concen-
tration procedure (49, 397). However, some newer single-vial col-
lection systems that utilize nontraditional fixatives can be used in
these assays. Many stool antigen assays have been shown to be as
sensitive and specific as culture with isoenzyme analysis and out-
perform microscopy for the detection of E. histolytica in areas of
endemicity (177, 179, 316). One study found that in comparison
to PCR, some stool antigen tests lacked sensitivity but were highly
specific in diagnosing E. histolytica/E. dispar in areas where these
parasites are not endemic (460), while another study found that
antigen detection tests can be both rapid and technically simple to
perform (177).

A number of molecular assays have been described in the scien-
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tific literature for detection and/or differentiation of Entamoeba
species and are now considered the gold standard for diagnosis
(177, 397). Both conventional and real-time PCRs have proven to
be more sensitive and specific than microscopic examination for
the detection of E. histolytica and E. dispar in single stool samples
(455, 460). In developed settings, PCR is more useful for detection
of E. histolytica in stools than antigen detection tests due to the
higher sensitivities observed for PCR and the reduced chance of
cross-reactivity with other Entamoeba species (167, 397, 460).
However, PCR has yet to become the mainstream for the detection
of parasites in the clinical laboratory, even in developed countries,
due to the need for specialized equipment, dedicated molecular
areas, specified workflow, and associated costs. It must be empha-
sized that when species differentiation is not possible, the E. his-
tolytica/E. dispar complex should be reported.

Serological methods such as indirect hemagglutination
(IHA), latex agglutination, immunoelectrophoresis, immuno-
fluorescence assay (IFA), and enzyme-linked immunosorbent
assay (ELISA) are highly sensitive at detecting E. histolytica anti-
bodies in human serum and are useful for detecting invasive dis-
ease (41, 131, 236). However, serology is of limited use in areas of
endemicity because of the difficulty in distinguishing between past
and present infections (167, 236); hence, it is of more value in
nonendemic settings in establishing the diagnosis of E. histolytica
infection if antibodies are present (460). A combination of mi-
croscopy, culture, and serology should be complemented with a
PCR assay or with abdominal imaging (when PCR is unavailable)
for detection of invasive disease (41, 131). Diagnosis of amoebic
brain abscesses usually requires computerized axial tomography
scans of the brain (257). Identification of E. histolytica antigens in
tissue aspirates or PCR analysis of tissue aspirates is also effective
(390).

All infections with E. histolytica should be treated because of its
potential for causing invasive disease and the risks to public health
(110, 324, 385). Asymptomatic carriers should be treated with a
luminal agent to minimize the spread of disease. The treatment of
choice differs for intestinal and invasive disease; hence, diagnosis
is important before treatment begins. Metronidazole is a highly
effective tissue amoebicide and is used in the treatment of invasive
amoebic disease. However, a luminal agent should be used in
combination, as treatment does not eliminate intestinal coloniza-
tion in up to 50% of patients with invasive amoebiasis, resulting in
relapse of invasive infection months later (174, 222, 236). Other
nitroimidazole derivatives, such as tinidazole and ornidazole, are
equally effective for treatment of invasive disease (218, 324). The
luminal agents paromomycin, iodoquinol, and diloxanide furoate
are strictly recommended for treatment of patients with intestinal
and asymptomatic infections, as they are effective in eliminating
cysts from the intestinal tract (174, 218).

Giardia intestinalis

Giardia intestinalis (syn. Giardia duodenalis and Giardia lamblia)
is a common cause of parasitic diarrhea, with prevalences ranging
from 2 to 7% in developed countries to 20 to 30% in most devel-
oping countries worldwide (134, 207). Because of the burden of
illness from Cryptosporidium spp. and Giardia, their ability to im-
pair development and socioeconomic improvements, and their
associations with poverty, they were included in the WHO Ne-
glected Diseases Initiative in 2004 (354). Giardia intestinalis con-
sists of seven genetically distinct genotypes, designated A to G, but

a novel lineage designated assemblage H has been identified in
marine vertebrates (233). Assemblages A and B infect mammalian
species and are the only two assemblages known to infect humans;
hence, they are considered to be zoonotic (118, 134, 146, 196, 236,
262, 433). Recent developments in the study of protein coding
capacities have found genomic differences between strains WB
(assemblage A) and GS (assemblage B), which may explain some
of the observed biological and clinical differences between the two
isolates. These observations led to the suggestion that Giardia as-
semblages A and B may be two different species (134, 207, 285).

It has been suggested that Giardia trophozoites may remain in
the small intestine for weeks to years (315). However, this is un-
supported, since many long-term infections are suspected to rep-
resent either persisting abdominal symptoms elicited post-Giar-
dia infection or reinfections (176, 196, 484). The fecal-oral route
still remains the most important mode of infection (33), and var-
ious studies have found evidence of zoonotic transmission (89,
118, 237). The symptoms of giardiasis can be variable, but it pres-
ents mainly as acute or chronic diarrhea associated with abdomi-
nal pain, nausea, malabsorption, and weight loss. In malnourished
children, infection can lead to growth retardation, and asymp-
tomatic illness is also possible (37, 40). There have been a few
reports suggesting that giardiasis may be a risk factor for zinc
deficiency in school-aged children (80, 328). High rates of asymp-
tomatic carriage of Giardia have been reported for humans and
animals in developing settings (213).

In developed settings, Giardia intestinalis has also been isolated
from various animals, including livestock (17, 31, 65), fish (475),
and nonhuman primates (262). Giardia infestation is common in
dogs and cats, with prevalences of approximately 8% to 16% and
4% to 11%, respectively (44, 302). While there is limited evidence
for direct transmission from companion animals to people, rare
infections and the isolation of zoonotic genotypes from cats and
dogs suggest that they are a potential source of human infection
that may be acquired through handling, sleeping together, licking,
and kissing (61, 308, 346, 424, 480). Giardiasis is frequently asso-
ciated with waterborne and day care center disease outbreaks and
is related to travel-associated diarrhea (471). A study of travel- and
migration-associated illnesses in Europe revealed that G. intesti-
nalis was the second most common pathogen and the most com-
mon parasite as a cause of gastrointestinal illnesses (122). Giardia
is frequently isolated from diarrheal stools from MSM, with or
without HIV/AIDS, in whom transmission is most likely via the
fecal-oral route (33, 324). In the United States, it is suspected that
seasonal peaks are related to increased use of recreational water
venues, such as lakes, rivers, swimming pools, and water parks, in
summer months (188).

Diagnosis is usually based on the microscopic detection of
Giardia cysts or trophozoites in a stool specimen. Stools may be
examined either directly as fresh smears, preserved in formalin or
polyvinyl alcohol and stained with iodine, trichrome, or hematox-
ylin, or after formalin-ethyl acetate concentration (222, 236, 262,
289, 305, 457, 465). Several antigen detection assays are available
for G. intestinalis, including EIAs, ELISAs, and monoclonal anti-
body and direct fluorescent-antibody tests, which are widely used
(130, 140, 141, 145, 234, 431). Many have proven to be cost- and
labor-effective, and many of them are designed for the sensitive
and specific testing of several protozoa simultaneously (140, 141,
465). These antigen detection tests are useful in screening settings
and are more sensitive than routine microscopic examinations for
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detection of ova, cysts, and parasites (OCP) (137). For example,
one rapid qualitative EIA has been demonstrated to have a 95.9%
sensitivity and 97.4% sensitivity for the detection of Giardia in
stool specimens (140). The use of real-time PCR as a tool for the
detection of Giardia is increasing in developed settings. Conven-
tional single, nested, and multiplex PCRs have also been devel-
oped but are utilized more often in specialized centers involved in
molecular studies of Giardia (40, 236, 475). These molecular
methods have proven to provide higher sensitivity than conven-
tional methods; however, many of them are still not commercially
available (236). The use of PCR in molecular epidemiology studies
has advanced the knowledge of the population structure of Giar-
dia, which has improved the understanding of zoonotic transmis-
sion and the molecular epidemiology of giardiasis (430).

Treatment is usually the same for both immunosuppressed and
immunocompetent patients (83). Metronidazole or tinidazole has
been used as the therapy of choice against giardiasis; however,
treatment failures and clinical relapses have been known to occur
(37) and could be due to the emergence of resistant isolates of
Giardia (37). Furazolidone, albendazole, nitazoxanide, and paro-
momycin are suitable alternatives when available (83). One vac-
cine (GiardiaVax) has been licensed for use in the United States to
prevent clinical disease in dogs and to significantly reduce the
incidence, severity, and duration of cyst shedding in cats (267).
However, more recent data have shown limited vaccine efficacy
(15), and no human vaccines are currently available (434).

Cyclospora cayetanensis

Cyclospora cayetanensis has emerged as an important cause of en-
demic or epidemic diarrheal illness in children and adults world-
wide (53). Cyclospora cayetanensis is the only species of this genus
found in humans and is host specific (79). An important feature of
the biology of C. cayetanensis is that oocysts excreted in feces re-
quire days to weeks outside the host to sporulate and to become
infectious; hence, direct fecal-oral transmission from relatively
fresh stool does not occur (189, 259). Clinical illness is character-
ized by persistent diarrhea, bloating, flatulence, abdominal
cramps, constipation, and fatigue (305). Illness associated with
travel to nonindustrialized countries has been reported in the
United Kingdom (291) and Netherlands (456) and is a common
cause of illness among returned international travelers (417).
However, non-travel-related and waterborne cases of cyclosporia-
sis have been reported in several developed countries (12, 450).
Food-borne outbreaks have been reported in North America (189,
291, 450) and Germany (92). Infections in immunosuppressed
patients have been reported in Turkey (350), and although symp-
toms may be similar to those in immunocompetent individuals,
they may be prolonged (410). Of the 1,110 laboratory-confirmed
cases of sporadic cyclosporiasis captured by U.S. disease surveil-
lance over the 1997-2008 period, approximately one-third of cases
occurred in persons with a known history of international travel,
the vast majority of whom traveled to countries in Southern and
Central America (173). Domestically acquired cases were concen-
trated in time (late spring and summer) and were probably linked
to an undetected outbreak (173).

Standard laboratory procedures for ova and parasites do not
identify Cyclospora; therefore, the laboratory must be notified
when Cyclospora is being considered (368, 461).

Diagnosis is made by the demonstration of Cyclospora oocysts
by examination of their autofluorescence and staining character-

istics. Oocysts appear as acid-fast round or ovoid structures and
autofluoresce white-blue under an epifluorescence microscope,
using a 330- to 380-nm dichromatic (DM) excitation filter, or blue
or green with a 450- to 490-nm DM filter (53, 137, 305, 306, 330,
456). However, detection is often difficult because the pathogen is
very small, measuring 8 to 10 �m in diameter; hence, oocyst mea-
surement is important to differentiate the oocysts of this species
from smaller Cryptosporidium oocysts, which measure 4 to 6 �m
(137, 259, 330). The oocysts can be seen in concentrated or non-
concentrated feces by light microscopy using various stains, but
the disadvantage is that C. cayetanensis oocysts stain only variably
with Gram, Giemsa, and hematoxylin-eosin stains and results are
variable with modified Ziehl-Neelsen staining (259, 368, 456). A
safranin-based stain has been described that uniformly stains
oocysts of Cyclospora a brilliant reddish orange when the smears
are heated in a microwave oven prior to staining (305, 461). Other
routine procedures in use include concentration by the formalin-
ethyl acetate technique followed by either (i) UV epifluorescence
and bright-field microscopy, (ii) examination of a modified acid-
fast-stained stool slide, or (iii) examination using a modified sa-
franin-based technique (151, 307, 368, 377, 461). Samples can be
stored in 2.5% potassium dichromate for 14 days at temperatures
ranging from 22 to 37°C for sporulation or molecular detection
(306, 377). In comparison to UV detection, the sensitivity of the
acid-fast technique is about 78% (93).

Various molecular techniques have been developed for the
identification of Cyclospora. These include spectrophotometry-
based detection with an oligonucleotide ligation assay. Various
PCR tools have been used that target the internal transcribed
spacer region, using primers for the 18S rRNA gene (93, 306).
These include conventional PCR, reverse transcriptase PCR in
combination with agarose gel electrophoresis, and nested PCR
(281, 304, 306, 314, 450). Some of these techniques for the iden-
tification of C. cayetanensis are time-consuming, labor-intensive,
and subject to problems of contamination; hence, further studies
are needed for the development of highly sensitive rapid tests for
this protozoan. On a cautionary note, it was reported that PCRs
for Cyclospora cross-amplify DNAs from other coccidia, especially
those belonging to the genus Eimeria. This cross-reactivity with
Eimeria is problematic mainly in outbreak settings and with envi-
ronmental specimens, since human infections by Eimeria are cur-
rently unknown (259, 314). A restriction fragment length poly-
morphism (RFLP) protocol is required to distinguish between
these species in environmental samples (259).

Laboratory diagnosis is important before empirical treatment
commences, since the organism requires different treatment from
that for some of the other protozoa of similar presentation (368).
Trimethoprim-sulfamethoxazole (TMP-SMZ; also known as cot-
rimoxazole) is the drug of choice for managing cyclosporiasis.
Infection can be treated effectively with cotrimoxazole for 10 days,
with results occurring in a few days (218, 222, 306). Oral or intra-
venous rehydration may be appropriate, based on the degree of
dehydration (368).

Blastocystis Species

Blastocystis spp. are commonly found in stools from humans and
numerous animal hosts (341, 418). There is considerable genetic
heterogeneity within Blastocystis organisms, and currently, hu-
man, mammalian, avian, and reptilian isolates have been assigned
to 1 of 13 subtypes (312, 341, 384, 402). While it is unclear whether
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any of these subtypes are specific to human disease, Blastocystis sp.
subtype 3 is most commonly associated with illness in human
prevalence studies (90, 341, 418, 479). The name Blastocystis homi-
nis refers to approximately 10 different genetically diverse popu-
lations that are all morphologically identical and cannot be differ-
entiated on the basis of microscopy alone (406, 435). In many
reports, B. hominis refers to the parasite isolated from humans and
Blastocystis spp. represent those isolated from other animal hosts
(293). Based on the discrepancies in the use of these terms, several
experts in the field have come to a consensus that based on pub-
lished small-subunit rRNA gene analyses, all mammalian and
avian isolates should be designated Blastocystis spp. and assigned
to one of nine subtypes (408). Knowledge about the life cycle of
Blastocystis spp. remains elusive, and various morphological
forms have been described (82, 320). These are the vacuolar, gran-
ular, amoeboid, and cyst forms, and other, less frequently encoun-
tered forms are the avacuolar and multivacuolar cells and cells
containing filament-like inclusions (191, 274, 371, 409, 419).

The role that Blastocystis spp. play in eliciting gastrointestinal
pathology and symptoms remains uncertain and controversial
(191, 421). Boorom et al. argue that there may be some pathogenic
variants of Blastocystis spp. and that the limitations in their detec-
tion by existing diagnostic methods may have added to the con-
troversy about their pathogenicity (32). Another thought is that
the amoeboid form of Blastocystis spp. could be either an indicator
of or contributor to the pathogenicity of these protozoa in patients
exhibiting symptoms (422), but this suggestion remains unsup-
ported (341, 420). However, more recent in vivo and in vitro stud-
ies suggest that some of the “strains” or potentially different spe-
cies of this organism may be pathogenic (32, 399, 418, 479). The
genetic and antigenic diversity among Blastocystis spp. compli-
cates the epidemiological understanding of these parasites; how-
ever, emerging evidence— despite still being controversial—sug-
gests that pathogenicity may be subtype dependent (419, 421). It is
thought that the cyst is probably the infectious form and is trans-
mitted by the fecal-oral route: when the parasite passes down the
intestinal tract, small vesicles within its cytoplasm coalesce into a
vacuole, eventually forming a cyst which is passed into the envi-
ronment in the stool of the host (191, 274, 371).

Clinical features of illness which have been attributed to Blasto-
cystis spp. include nausea, anorexia, abdominal pain, flatulence,
and acute or chronic diarrhea (216, 381). In several instances,
Blastocystis spp. have been the most common enteric organisms
isolated from diarrheal patients but have been reported as nonin-
fectious pathogens (422, 438, 444). Blastocystis spp. are the most
common enteric protozoa isolated from diarrheal patients in most
developed countries (247, 309, 395, 416). For example, they are
commonly isolated from immigrants in Italy (164), associated
with chronic gastrointestinal illness of unknown etiology (216),
and often associated with IBS-like symptoms (32, 90, 91, 211).

However, numerous studies have found no link between Blas-
tocystis spp. and active disease (90, 91, 404, 420). It has also been
argued that identification of Blastocystis from patient samples is
not clinically significant but should be used as a marker of poten-
tial exposure to other pathogenic protozoa (315). Another study
suggested that immunosuppression plays an important role in the
display of clinical symptoms (418). More recently, clinical and
molecular investigations demonstrated an association with Blas-
tocystis spp. in IBS patients that supports a pathogenic role of this
parasite in Latin America (211). However, other studies have

failed to establish an association between Blastocystis spp. and IBS
(334, 414, 440). It has been suggested that since IBS is a functional
disorder that can be caused by various microbiological, genetic,
and environmental factors, these factors could also explain the
discrepancy in the literature (321). Cysts may be waterborne, food
borne, or passed from person to person, especially in child care
centers or other institutional settings. It has also been suggested
that since many zoonotic subtypes exist, there is increased poten-
tial for zoonotic transmission (191, 420, 438).

The diagnosis of infection with Blastocystis spp. is usually based
on the detection of the vacuolar, granular, amoebic, or cystic form
in stool samples, using wet mount smears, iodine staining,
trichrome staining, or iron-hematoxylin staining (309, 341, 390,
402, 404, 416, 481). However, identification by direct wet mounts
is difficult and has resulted in false-negative results due to the
polymorphic nature of Blastocystis spp. (404, 419). It has been
suggested that trichrome-stained fecal smears or xenic in vitro
culture systems offer the best sensitivity (90, 418). However, slow-
er-growing subtypes (e.g., subtype 7) may be missed with this
procedure (418). The formol ether concentration technique
(FECT), which is commonly used for laboratory identification of
OCP, is not recommended for Blastocystis due to its inability to
isolate Blastocystis spp. (309, 404, 419).

Several molecular techniques with increased sensitivity have
been developed (341). Advancements in the sequence analysis of
Blastocystis-specific PCR products and subtype-specific PCR
primers have led to progress in identifying several subtypes (268,
312, 341, 402, 418, 451). PCR using the SSU rRNA gene is being
used increasingly for detection of Blastocystis spp. Despite being
more costly, PCRs have demonstrated much higher sensitivities
than more commonly used methods such as permanent staining
(48%) (211, 341), direct light microscopy (29%), and xenic in
vitro stool culture analysis (52%) (320). Owing to the wide genetic
diversity among Blastocystis spp., the choice of primers is crucial
from a diagnostic perspective (341).

Although disagreement about the pathogenicity of Blastocystis
spp. still exists, treatment is indicated when there is no alternative
explanation for symptoms (109, 218). Metronidazole is the sug-
gested drug of choice, although failures of this drug in eradicating
the organism are common (275, 407, 409). Cotrimoxazole, nita-
zoxanide, and a combination of paromomycin and metronidazole
have also been used (222, 485). A recent study found extensive
differences in drug sensitivities among two clinically important
zoonotic subtypes (subtypes 4 and 7) and identified four new po-
tential therapeutic options against Blastocystis spp., namely, mef-
loquine, cotrimoxazole (trimethoprim-sulfamethoxazole) (1:2),
ornidazole, and furazolidone; the study also confirmed the anti-
protozoal activities of 10 compounds already reported to be effec-
tive against Blastocystis spp. (272). It is clear that antimicrobial
eradication of Blastocystis spp. is possible; however, because of the
difficulty of the problem, a reevaluation of current treatment regi-
mens is required, with a view to defining clear new treatments. Con-
sideration should also be given to the fact that improvements in
symptoms after treatment with metronidazole or trimethoprim-
sulfamethoxazole may be due to clinical effectiveness of these drugs
against coinfecting pathogens (71). There is therefore a need for fur-
ther investigations to better understand drug efficacy, resistance, and
reinfection issues (407).
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Cystoisospora belli (formerly Isospora belli)

Cystoisospora belli causes intestinal disease in several mammalian
hosts (42). Infections are thought to be acquired through the in-
gestion of mature environmentally resistant sporulated oocysts in
contaminated food or water, although good evidence for the
source of infection in most infected patients is limited (109, 219).
Infection is almost indistinguishable from cryptosporidiosis (208)
and is usually self-limiting and characterized by watery diarrhea,
abdominal cramps, anorexia, and weight loss (175, 311).
Cystoisospora belli is often implicated in traveler’s diarrhea in trav-
elers to developing countries with high levels of endemicity (2,
156, 311, 313, 427). It is more common in AIDS patients (165, 230,
453), other immunocompromised patients (163, 227, 266, 336,
344), and indigenous populations in the United States (291, 315).
In HIV-infected patients, infection may be characterized by
chronic diarrhea, acalculous cholecystitis cholangiopathy, and ex-
traintestinal infection (337, 453). Other Cystoisospora species are
important causes of diarrhea in domestic animals (108), and
Cystoisospora suis is an economically important parasite causing
severe diarrheal illness in pigs (8, 212, 282).

Diagnosis is made by direct microscopic observation of the
oocyst in feces, with acid-fast staining, since the oocysts are large
(20 to 23 �m by 10 to 19 �m) and morphologically distinctive.
Diagnosis has also been done from mucosal biopsy specimens
(227, 453). Molecular techniques such as conventional and real-
time PCR can be used to augment diagnosis where possible, since
these methods can be more sensitive in detecting infection (283).
However, while PCRs have shown excellent sensitivity and speci-
ficity for the detection of C. belli in fecal samples, these are neither
widely nor commercially available (283, 337, 347, 390, 427, 453).
Infection usually responds to treatment with oral cotrimoxazole,
and where resistance or intolerance exists, ciprofloxacin is a good
alternative (109).

Balantidium coli

Balantidium coli is a ciliate and is the largest protozoan that infects
humans (114, 383). Pigs are thought to be the natural host of this
parasite, despite showing no clinical disease (111, 359). Infections
in humans are acquired via the fecal-oral route from the ingestion
of cysts present in untreated or minimally treated water and on
uncooked or undercooked food (114, 374). Human infection is
common mainly in communities that live in close proximity to
pigs (114, 359). The vast majority of infections are asymptomatic,
but mild diarrhea and abdominal discomfort have been reported
in symptomatic patients. A few patients develop fulminating acute
balantidiasis, with intestinal perforation leading to a case fatality
rate of about 30%, or fulminating dysentery associated with hem-
orrhage and shock, resembling amoebic dysentery (120, 359). Bal-
antidiasis is uncommon in developed countries, but infections
have been reported as far north as Sweden, Finland, and Northern
Russia, with the highest prevalence rates in tropical and subtrop-
ical regions (383). In developed countries, clinicians and labora-
tory technologists should consider balantidiasis as an alternate
diagnosis for patients presenting with watery diarrhea who have a
recent travel history to developing countries, especially those in
Southeast Asia, the Western Pacific islands, and rural South
America (111, 120, 359, 360).

Because of its large size (cysts are 50 to 70 �m; trophozoites are
30 to 200 �m by 40 to 70 �m) and spiraling motility, Balantidium

is easily recognized in wet mount slide preparations. Trophozoites
are visible with a hand lens, and sometimes with the naked eye, in
freshly collected diarrheic stools (114, 359) as well as in bron-
choalveolar wash fluid; cysts are more common in formed stools.
Collection of stool samples over several days is recommended be-
cause excretion of parasites can be erratic (359). Treatment is
done with tetracycline or metronidazole for 5 or 10 days, respec-
tively (109).

Intestinal Microsporidiosis (Enterocytozoon bieneusi and
Encephalitozoon intestinalis)

Enterocytozoon bieneusi and Encephalitozoon intestinalis are spe-
cies of microsporidia that cause enteric disease. These parasites,
historically considered spore-forming protozoa, are now classified
as fungi (69, 150, 157). However, based on their importance, es-
pecially in immunocompromised populations, they are included
in this review. Intestinal microsporidiosis was first identified in
AIDS patients, with E. bieneusi being the more common of the two
causative species (81, 398). Many identical genotypes of E. bieneusi
from humans and animals are known (81), raising concerns over
waterborne, food-borne, and zoonotic transmission. The impor-
tance of this parasite in human infections increased as it became a
cause of opportunistic infections in HIV/AIDS and other immu-
nosuppressed patients during the 1980s (6, 29, 114, 248, 315).
However, with increasing access to antiretroviral therapy, infec-
tion rates in HIV/AIDS patients have reduced significantly (390,
448), with prevalences ranging from 0 to 42% (13). Infections
have also been found in non-HIV/AIDS and immunocompetent
patients (1, 248) and in persons with corneal infections (263), and
there are also many infections thought to be associated with pro-
tracted traveler’s diarrhea, during or after travel (156). Infections
with Encephalitozoon spp. are believed to occur through ingestion
or inhalation of spores (86), with the primary infection develop-
ing in the epithelium of the small intestinal or respiratory tract
(86). Severe ulceration of the small bowel is associated with mu-
cosal atrophy and acute and chronic inflammation (13). In the
case of E. bieneusi, infection occurs mainly through ingestion of
spores, which subsequently develop within the epithelial cells lin-
ing the duodenum and jejunum of the small intestine (86). Gas-
trointestinal symptoms include persistent diarrhea, abdominal
pain, and weight loss, especially in immunosuppressed individu-
als (86). In otherwise healthy individuals such as travelers, E. bie-
neusi infection has resulted in self-limiting diarrhea of approxi-
mately 1 month (86). Fecal-oral transmission is implicated most
often as the means of infection (96).

The diagnosis of intestinal microsporidiosis is difficult and is
usually based on microscopic detection of the spores in stool sam-
ples, requiring special fluorescent or trichrome stains to detect the
small spores (114, 200, 222). However, the detection of the spores
and species determination can be difficult due to their small size
(222), requiring reliable immunological diagnostics to supple-
ment PCR or histochemistry when sporadic spore shedding is sus-
pected (88). One study found that microscopy and staining dem-
onstrated low sensitivity for the detection of microsporidian
species compared with the calcofluor white technique and stain-
ing with DAPI (4=,6-diamidino-2-phenylindole), which demon-
strated a higher sensitivity and specificity (97.12% and 98.55%,
respectively) (439). However, the disadvantage of calcofluor white
staining is that it requires a fluorescence microscope and is a non-
specific stain leading to the fluorescence of other organisms and
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artifacts which can be mistaken for microsporidia (78, 423). PCR-
based methods have now been used successfully for detection of
microsporidian infections, exhibiting excellent sensitivity and
specificity (186, 248, 349).

Where treatment is indicated, albendazole, administered at 400
mg every 12 h for 1 month, is effective against Encephalitozoon
species (13, 114, 222). Enterocytozoon bieneusi is less responsive to
albendazole, and while symptoms may improve, microsporidian
spore shedding is likely to continue (136). Fumagillin is the only
treatment that has demonstrated consistent efficacy against E. bie-
neusi infection; however, neutropenia and thrombocytopenia
have been reported as major side effects in both HIV-infected
patients and transplant recipients, requiring monitoring of
tacrolimus levels (58, 276). Supportive fluid therapy in immu-
nocompromised patients and early initiation of HAART in
HIV-infected patients are crucial to help restore the immune
status of the host (87, 114, 117). Significant reductions have
been seen in the incidence of intestinal microsporidiosis in
HIV-infected patients since the introduction of HAART
(398, 448).

MODES OF TRANSMISSION

Any discussion about the importance of enteric protozoa in public
health cannot be complete without the inclusion of their modes of
transmission, as these routes play a significant role in their wide-
spread dissemination and affect people from all walks of life (Fig.
2). Interventions aimed at prevention and control of these routes
of transmission have proven effective in various settings in reduc-
ing the incidence and prevalence of diarrheal illnesses. Food- and
waterborne transmission is the main focus of this section.

Food-Borne Transmission

The majority of the enteric protozoa discussed herein can be
transmitted by food. Although the risk of obtaining a food-borne
protozoan infection is lower in developed settings, the significance
and impact of these infections cannot be ignored (125, 183, 222,
288). In developed countries, large-scale food production, distri-
bution, retailing, and importation of raw food ingredients in-
crease the risk for the spread of food-borne infectious disease and
often result in costly recalls (250). Intestinal protozoa can con-
taminate food through a variety of routes (42). Food can become
contaminated with parasites during the production stage, from
contaminated irrigation water, soil, untreated manure, or biosol-
ids used as fertilizers (54). Food may also become contaminated
during the harvesting, handling, and preparation processes, from
cross-contamination with soiled implements, animal manure, or
contaminated water used for preparation or by the hands of the
food handlers themselves (79, 157, 174). The risk of food-borne
transmission is increased when food is consumed raw, under-
cooked, or in a semicooked form (198, 322). Food becomes con-
taminated directly from feces, soil, irrigation water, sewage, and
human handling during various phases of the food production
chain (115, 288, 383).

Food-borne outbreaks cost individuals and families thousands
of dollars in medical costs and lost wages. The food industry suf-
fers financially even more due to recalls of food products, litiga-
tion, and, sometimes, closure (38, 184, 197). In recognizing the
public health and trade implications of pathogens in fresh fruit
and vegetables, the FAO and WHO have provided scientific advice
to the Codex Committee on Food Hygiene (CCFH) on the fresh
produce commodities of greatest concern from a global perspec-
tive (113). The submission looked at microbial hazards in produce
that is marketed fresh, and often ready-to-eat, throughout the
production-to-consumption continuum, with the development
of specific management guidance (113).

Cryptosporidium, C. cayetanensis, and Giardia are the main en-
teric protozoa associated with food-borne infections in developed
countries (291). A U.S. report for the years 2000 to 2008 indicated
that a significant proportion of laboratory-confirmed cases of
food-borne parasitic diseases were due to G. intestinalis (356). In
addition, of a total of 53 cases of seafood-associated outbreaks of
parasitic infection reported in the United States from 1973 to
2006, Giardia was responsible for 43%; more than half (55%) of
these were associated with the consumption of fish (199). It was
reported that from 1990 to 2000, there were 11 food-borne out-
breaks of cyclosporiasis in North America that affected at least
3,600 people (259). Almost all cases of C. cayetanensis infection in
the United States are food borne (173, 356). Several cases of food-
borne cyclosporiasis related to the consumption of salads have
also been reported in European countries (92, 198, 350). Accord-
ing to one U.S. report, source attribution is often affected by in-
sufficient numbers of cases for definitive case-control studies and
a lack of tools for molecular epidemiology (173). Approximately
10% of Cryptosporidium infections are ascribed to food-borne
transmission (171), and outbreaks have been associated with eat-
ing raw produce or salads (66, 187, 322, 476). Food-borne out-
breaks associated with imported foods have been reported in sev-
eral industrialized countries (92, 189, 271, 291, 322, 450). It is
therefore important to have adequate food safety standards in
place to govern locally produced and imported foods, which is

FIG 2 Complex interactions in the transmission and control of enteric pro-
tozoal infections. Infectious parasites are transmitted to humans through sev-
eral routes, including contaminated food and water, inadequately treated sew-
age/sewage products, and livestock and domestic pet handling. Prevention and
control strategies can be implemented at different levels of food production,
liquid waste management, water quality control, and livestock and pet han-
dling processes.
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essential to the safety of the food supply chain (220). In addition,
industrialized countries should give priority to the institution of
sensitive disease surveillance systems and the development of mo-
lecular methods for linking cases of protozoan infections (162,
173, 258).

Waterborne Transmission

The role of water resources in the transmission of enteric protozoa
cannot be overemphasized, especially where there is the potential
for water supply contamination. Despite ongoing investment in
better sanitation infrastructure, water quality, and environmental
protection legislations and the subsequent reduction in pathogen
loads in public water supplies, waterborne disease outbreaks still
pose significant risks to human health in developed countries
(34). Small water supplies in rural communities in developed
countries may be more vulnerable to contamination than the
larger public water supplies, resulting in outbreaks of infectious
disease (195, 317). In the United States, it is suspected that sea-
sonal peaks of cryptosporidiosis are related to increased use of
recreational water venues such as lakes, rivers, swimming pools,
and water parks in summer months (188, 463). Cryptosporidium
hominis subtype IbA10G2 was the causative agent identified in the
largest waterborne outbreak of cryptosporidiosis reported in Aus-
tralia to date and was associated with public swimming pools in
densely populated coastal cities (463). Surveillance-based data in-
dicate a significant increase in onset of cryptosporidiosis and
giardiasis during summer through early fall in the United States
(476, 477). These are likely associated with increased outdoor ac-
tivities and increased exposures, such as camping and use of com-
munal swimming venues (e.g., lakes, rivers, swimming pools, and
water parks) by young children, during the summer recreational
water season (476, 477). Cryptosporidium spp. remain the leading
cause of diarrheal illness outbreaks in treated recreational water
venues in the United States (476). One study determined that
acute diarrheal illness associated with small community water
supplies could cost an estimated $4.671 billion (95% CI, $1.721 to
$9.592 billion), with the capital costs of intervention amounting
to $13.703 billion (95% CI, $6.670 to $20.735 billion) and those of
postinfectious IBS resulting from these acute gastroenteritis out-
breaks amounting to $11.896 billion (95% CI, $3.118 to $22.657
billion) (195).

The oocysts of several protozoa are highly resistant to chlorina-
tion, a conventional water treatment method (43). It is suspected
that when water becomes contaminated, oocysts can become
trapped by chlorine and UV-resistant biofilms in water pipelines
and constantly shed into the water supply (68, 123, 466). While
availability of potable water and water treatment standards are
generally better in developed countries, remote and isolated areas
often have deficient water systems, resulting in waterborne out-
breaks, for example, in South Bass Island, OH (303), and in France
(135). Giardia intestinalis and Cryptosporidium spp. have been im-
plicated in several large waterborne outbreaks in the United States
(72, 252, 303, 352), Norway (297), Australia (295, 463), and else-
where (360).

Many countries worldwide have legislation or follow standard
guidelines to monitor microbial indicator organisms to determine
the microbiological quality of water (68, 317). Traditionally, fecal
indicator bacteria (FIB)—total coliforms, fecal coliforms, and en-
terococci—are used as microbial indicators, and there are very few
reports outlining the use of protozoa as indicators of fecal pollu-

tion (190, 269, 310, 353). Unfortunately, many waterborne patho-
gens are still difficult to detect, and despite advances in molecular
diagnostics, such methods are not widely available or used even in
developed countries (123). Increased water shortages in some de-
veloped countries have caused authorities to resort to the use of
recycled water from highly contaminated sources such as sewage
(67, 239). The increased use of biosolids from sewage as soil con-
ditioners as a means of sustainable disposal has raised issues about
the potential for the transmission of infectious pathogens, includ-
ing the protozoa G. intestinalis, Cryptosporidium spp., Balantid-
ium, Entamoeba spp., Blastocystis spp., and Dientamoeba fragilis
(23, 104, 217). These issues have been the subject of extensive
debate in many countries, such as Australia, New Zealand, the
United States, and countries in the European Union, highlighting
an extensive gap in knowledge on the spread of enteric protozoa
through recycled sewage and biosolids (67, 243).

Potable water. A water supply can become contaminated by
sewage and runoff from farms, fecal matter from animal activity,
or decomposing animal carcasses washed into water bodies (154).
In properly operated conventional water treatment plants, most
protozoa are excluded from drinking water by their size (�30
�m). However, due to their smaller size (range, 1 to 17 �m), G.
intestinalis cysts, Cryptosporidium oocysts, and the spores of mi-
crosporidia have been able to penetrate water treatment systems
and have been detected in aquatic environments (415). While wa-
terborne infections are not as widespread in many developed
countries, climatic events that can tax treatment plant operations
or inadequate, interrupted, and intermittent treatment can occur,
resulting in large outbreaks in the community (297, 338). In a
Spanish study, Cryptosporidium oocysts were found in 15.4% to
63.5% of various raw surface water samples, 30.8% of treated wa-
ter from small treatment facilities, and 26.8% of chlorinated tap
water. Giardia cysts were found in 26.9% to 92.3% of various raw
surface water samples, 19.2% of treated water from small treat-
ment facilities, and 26.8% of chlorinated tap water. The presence
of Cryptosporidium and G. intestinalis was significantly associated
with the turbidity levels of the samples and with increased count
levels for total coliforms and Escherichia coli (P � 0.01) (46).

A review of documented waterborne disease outbreaks in the
United States from 1971 to 2006 found that parasites accounted
for about 18% of outbreaks (72). Giardia intestinalis was the sole
pathogen identified in 86.0% (123) of the 143 drinking water out-
breaks of known parasitic etiology, affecting 28,127 individuals
(6.3% of the 449,959 cases) (72). On the other hand, Cryptospo-
ridium was responsible for only 13 outbreaks (9.1%), but these
outbreaks were responsible for the vast majority (421,301 cases
[93.6%]) of the total cases. The majority of cryptosporidiosis
(403,000 cases) cases were attributed to a single outbreak of C.
hominis in Milwaukee, WI (72, 252). Entamoeba spp. and C. cay-
etanensis were responsible for two and one outbreak, respectively,
with fewer cases, while coinfections were also identified (Crypto-
sporidium-Giardia and Giardia-Entamoeba spp.) as the cause of
two and one outbreak, respectively (72).

More recently, concern has been raised about the role of bio-
films in drinking water distribution networks and the role they
play in becoming transient or long-term habitats for hygienically
relevant microorganisms, including parasitic protozoa (e.g.,
Cryptosporidium). These organisms can attach to preexisting bio-
films, where they become integrated and survive for days to weeks
or even longer, depending on the biology and ecology of the or-
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ganism and the environmental conditions, remaining undetected
by conventional detection methods (472). It has been suggested
that protozoa may act as protective environments for pathogenic
bacteria, protecting them from disinfection and promoting ex-
tended survival under these conditions (378). Further study is
therefore important to determine the role of biofilms in drinking
water systems and their potential for long-term harborage of en-
teric protozoa and other pathogenic organisms and subsequent
health risks to humans (378, 472).

Rain/roof water has been used worldwide, especially where wa-
ter scarcity is a problem, as an alternative water source for drink-
ing and various nonpotable uses (4, 239). This generally involves
installing rainwater tanks to collect roof water from residential
dwellings for uses such as drinking, cooking, irrigation, shower-
ing, clothes laundering, and toilet flushing (4, 103, 458). Despite
the obvious benefits from using rainwater, there are public health
risks, including the transmission of zoonotic bacterial and proto-
zoan pathogens from bird and animal droppings via individual
and communal rainwater systems (4, 458). The Australian guide-
lines indicate that roof water should be harvested in a way that
minimizes health and environmental risks or, at a minimum, re-
duces these risks to acceptable levels (103). In countries where the
microbiological quality of rainwater is assessed, it is based mainly
on the three bacterial indicators (coliforms, E. coli, and entero-
cocci) that are commonly detected in harvested rainwater. Their
presence may be an indication of the potential for contamination
with environmentally resistant cysts or oocysts of protozoa (46,
240, 246). A report from South East Queensland, Australia, found
Giardia in 10% of roof-harvested rainwater samples (5). Based on
the assessment of the risk of infection associated with various
types of exposure to rainwater, it was reported that although the
risk of infection from the use of rainwater for showering and gar-
den hosing was well below the threshold value of one extra infec-
tion per 10,000 persons per year, the risk of infection from ingest-
ing G. intestinalis via drinking exceeded this threshold value and
indicated that if undisinfected rainwater was ingested by drinking,
then the incidence of giardiasis would be expected to range from
1.0 � 101 to 6.5 � 101 cases (with a mean of 1.6 � 101 cases based
on Monte Carlo analysis) per 10,000 persons per year (5). These
findings indicate the need for disinfection of rainwater for drink-
ing purposes (5). Giardiasis is a frequently diagnosed waterborne
disease and is a major public health concern for water utilities in
developed nations (196, 238, 430).

Evidence for contamination of groundwater with protozoa was
found in France. Cryptosporidium oocysts were detected in 78% of
both surface water and groundwater samples, while Giardia cysts
were found in 22% and 8% of surface water and groundwater
(sinkhole, spring, and well bore) samples, respectively (223).
Cryptosporidium oocysts were transported from the sinkhole to
the spring and the well bore, suggesting that oocysts are subject to
storage and remobilization in karst conduits (223, 269).

Wastewater and biosolids. Increased urban populations, in-
dustrialization, and urbanization have resulted in the overwhelm-
ing production of sewage sludge (23). Wastewater treatment pro-
cesses should reduce the number of pathogens in the wastewater
by concentrating them with the solids in the sludge. Although
some treatment processes are designed specifically to inactivate
pathogens, many are not, hence the potential risk for pathogen
survival in sewage sludge and its by-products (155). The most
widely available and recommended option is land application of

sewage sludge to cropping land as a soil conditioner and fertilizer
(23). However, by virtue of its origin, sewage sludge is a reservoir
for enteric pathogens. One major risk is that biosolids may contain
ova and cysts of parasites and enteric bacteria and viruses (23, 67).
Health risks may result from the consumption of food and water
contaminated with sewage or biosolids (369) or crops grown on
biosolid-enriched soil (286, 287). In managing the beneficial reuse
of biosolids on land, a balance is achieved between treating con-
taminants in the biosolids and retaining the biosolids’ nutrient
value. The U.S. EPA legislation for the safe use of biosolids (known
as the Part 503 Rule) was promulgated in 1993 and used opera-
tional standards intended to reduce pathogens to levels that are
not expected to cause adverse health effects (105). Similar guide-
lines have been established in Europe, the United Kingdom, and
Australia (104, 369). The proponents of the use of biosolids in this
way suggest that for it to be considered a public health risk, a
plausible transmission route should exist between the source (bio-
solids) and the susceptible community. The pathogenic protozoa
would need to be present in a sufficient infectious dose, survive the
sewage/biosolids treatment processes, survive through storage
and land application, enter into the water supply system, and by-
pass drinking water treatment (67, 159, 369). Gerba et al. con-
cluded that the probability of emerging parasites such as mi-
crosporidia and Cyclospora surviving various biosolids treatments
was low, since they were unlikely to survive the temperatures
achieved in anaerobic digestion and do not survive well under
low-moisture conditions (142). However, another study detected
Cryptosporidium oocysts in 10% and Giardia cysts in 35% of the
samples of sludge sanitized by quicklime or peat and after 30
weeks of composting (339). In addition, many practitioners and
researchers do not encourage the reuse of recycled sewage as
potable water because pathogens such as Giardia are not always
effectively removed and because of the possibility of malfunction-
ing of reverse osmosis (RO) systems— deemed the most effective
in removing viruses—as often as 5 days a year (67).

Biosolids generated at wastewater treatment plants (WWTP),
along with food waste, pet excrement (i.e., dog and cat feces), and
human excrement in absorbent products (e.g., disposable baby
napkins for children and adults and feminine hygiene products),
are considered a potential source of infectious microorganisms in
municipal solid waste (MSW) (143). The majority of protozoan
parasites (97%) are expected to come from pet feces; however, the
evidence suggests that enteric protozoa would be expected to be
inactivated by temperatures above 45°C and that most landfills
achieve temperatures of 38°C to 78°C (143). There is still much
uncertainty about the survival of enteric protozoa in leachate from
unlined landfills and the resultant contamination of underground
aquifers and the water supply. One of the most recent studies to
evaluate this found the presence of viable Giardia in large concen-
trations in leachate (143).

IMPLICATIONS OF CLIMATE-RELATED CHANGES

According to the Stern review, climate change is a serious global
threat and demands an urgent global response (411). Climatolo-
gists and health experts have postulated that climate change will
impact human health, and this is best understood by the identifi-
cation of existing vulnerabilities of the ecosystem to climate vari-
ability (59, 97). Vulnerabilities include highly complex interac-
tions between changing weather, ecosystem changes, microbial
and parasitic evolution, and technological and societal adapta-
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tions (59, 98). The main impact to health may arise from changes
in weather patterns associated with extreme weather events such
as excessive rainfall, flooding, and droughts (172, 206). These
events have the ability to significantly increase the risk of infec-
tious diseases due to the abundance and distribution of disease
agents in the environment (97, 279, 333). Some experts have pro-
jected that the following water-related risks are likely to increase in
both developed and developing countries as a direct result of cli-
mate change: (i) excess precipitation and floods may result in
increased runoff and turbidity and decreased effectiveness of wa-
ter treatment (59); (ii) heavy rain, snow, or ice melt may flush
animal manure, human sewage, and wildlife and pet droppings
into surface water or groundwater reservoirs, leading to contam-
ination of drinking water sources (59, 77); (iii) droughts may lead
to reduced water availability, lower water pressure, compaction
contributing to increased runoff when rain eventually does fall
(59), and increased use of alternative water sources for domestic
purposes and irrigation, increasing the likelihood of contamina-
tion of water and food (435); (iv) a decreased food supply associ-
ated with extended dry spells and drought in some countries may
lead to increased importation of substandard foods, resulting in
the introduction of food safety hazards such as enteric protozoa at
various stages of the food chain, from primary production
through to consumption (435); and (v) there may be increased
risk for the contamination of recreational waters and exacerbation
of the presence of biological contaminants in marine environ-
ments, leading to seafood contamination (261).

The greatest impact of climate change is expected to be on less
developed countries, and small island states are particularly vul-
nerable to the effects of extreme weather, sea level rise, and in-
creased temperatures (411, 413). In the context of infectious dis-
eases, the smallest and poorest populations could be affected most
seriously due to already vulnerable economies and public health
infrastructure, inadequate fresh water resources, and poor sanita-
tion and hygiene (99, 182). Health consequences such as diarrheal
diseases, malnutrition, and malaria are projected to pose the larg-
est risks to future populations, especially young children (97).
Projections suggest that although low-income countries will be
most vulnerable to adverse effects, requiring additional human
and financial resources, high-income countries will also be af-
fected adversely, with the severe impact on the local economy (97,
411). Generally speaking, the risk of diarrheal disease in developed
countries may be mediated by more stringent public health mea-
sures for sewage disposal, water treatment, and hygiene. However,
indigenous populations, institutionalized persons, and the immu-
nosuppressed will remain at extremely high risk (206). There is
therefore need for more research into the role of this phenomenon
in the spread of enteric infections in developed settings.

The challenges of food-borne, waterborne, and zoonotic pro-
tozoan diseases associated with climate change are expected to
increase, with a need for active surveillance systems, some of
which have already been initiated by several developed countries
(172, 206). Studies conducted in the United States (77), Taiwan
(62), New Zealand (35), Australia (172), Bangladesh (182), Can-
ada (428), and China (483) have found increased diarrhea-asso-
ciated morbidity related to increased temperature and extreme
rainfall days, although in Australia there were no differences in
climate-associated increases in Salmonella infection rates between
subtropical and tropical regions (482). Several authors have sug-
gested that the seasonal incidence of infection with some enteric

protozoa may be affected by increased rainfall, increased pollution
from farm waste, or animal husbandry practices (172, 206). Expo-
sure to floodwaters and swimming in lakes and ponds with ele-
vated pathogen levels are other risk factors to be noted (99). Man-
agement of diarrheal illnesses in this complex setting will require
dialogue and collaboration between public health, water treat-
ment, veterinary, and food safety experts worldwide (288). The
rate of climate change, the degree of its effect, and its impact on
infectious diseases, including parasitic diseases, may differ from
country to country (224, 362). These conclusions are therefore
drawn based on scientific plausibility, and countries should seek
to establish proper surveillance networks to connect epidemic in-
telligence and infectious disease surveillance with meteorological,
entomological, water quality, remote sensing, and other data for
multivariate analyses and predictions (362).

PREVENTION AND CONTROL OF PROTOZOAN INFECTIONS

The ubiquitous nature, small size, and abundance in the environ-
ment of protozoan parasites make them difficult to control.
Health care providers and public health personnel should provide
adequate instructions to infected patients and carriers on how to
avoid spreading the infection to others and should employ infec-
tion control precautions for hospitalized and institutionalized pa-
tients. The following are suggested controls based on proven in-
tervention measures that can be applied in various situations.

General Measures

In domestic settings, simple prevention and control measures are
effective against most enteric parasites. These include personal
hygiene; hand washing after using or handling the toilet, changing
diapers, or caring for a person with diarrhea and before preparing
or handling food (366); proper disposal of excreta; and washing of
soiled materials such as clothing or bedding. The use of adequately
treated water, for example, by boiling, for drinking, food prepa-
ration, and washing of fruits and vegetables is essential (57). In the
food industry, some protozoa get into food through fecal contam-
ination of raw materials and inadequate treatment of the food
before consumption or through posttreatment contamination.
This is true for the oocysts or sporocysts of Cryptosporidium spp.
and C. cayetanensis (291, 374). Control measures must therefore
be aimed at all aspects of the food chain, including minimizing
dissemination of cysts and oocysts in the farming environment
and via human waste management (373). This may include
abstinence from using untreated human and animal manure in
farming.

Food hygiene and management practices in food service and
catering industries should include restricting the purchase of raw
materials to suppliers with good agricultural practices (95) and
having adequate facilities for washing and cleaning of raw fruits
and vegetables before storage and before preparation (220). A sys-
tem for identifying and controlling microbial hazards, such as the
Hazard Analysis Critical Control Point (HACCP), should be em-
ployed by food and water production companies, in industries or
sectors that use fresh produce, and in operations in which con-
taminated water or ingredients could end up in the product (79,
172, 202).

Persons working in high-risk environments such as schools, day
care centers, food-handling facilities, and aged-care institutions
should be educated properly on their risk of infection (297), and
where infection occurs, persons should be excluded for up to 48 h
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after the last diarrhea episode (10). Infected persons such as trav-
elers, campers, and hikers should refrain from passing of feces into
rivers and streams and should not use recreational waters such as
swimming pools and public baths for up to 2 weeks after symp-
toms cease (57). Cryptosporidium spp. and Giardia intestinalis in
swimming pools are difficult to control (325). Open farms and
petting zoos should have guidelines in place for the handling of
animals and should ensure that adequate hand-washing facilities
are in place for visitors and staff. Wilderness backpackers and
travelers to developing countries must exercise precautions with
food and drinking water safety (331). Basic hygiene, including
hand washing and cleaning of cookware, is essential in the preven-
tion of diarrhea (10). Long-term groups, including military, mis-
sionary, aid worker, volunteer, and tourist groups, should seek
travel advice. They should also take with them adequate supplies
to treat water for domestic use (e.g., filtration and boiling), as
chlorination by itself cannot remove the oocysts of protozoa such
as Cryptosporidium spp. and C. cayetanensis from water (12, 19).
Routine boiling should be used to augment chlorination in less
developed settings (331). Since domestic house flies can play a role
in the efficient transmission of human protozoan parasites, care
must be taken with food exposed to flies (160). In the case of
cyclosporiasis, it is important that it be considered by microbiol-
ogists and physicians as a possible cause of illnesses in cases of
prolonged diarrhea that are not associated with travel, as well as in
food-borne outbreaks associated with imported foods (306).

Water and Wastewater Quality Control

Drinking water supply. The benefits of supplying safe water can-
not be overemphasized (256, 365). Hunter and colleagues esti-
mated that the cost benefit of annual maintenance coupled with
the benefits of reducing the impact of postgastroenteritis IBS from
waterborne infections was nearly 10 times (9.87; 95% CI, 3.34 to
20.49), suggesting that the health benefits of improving the man-
agement of water supply systems outweigh the costs (195). Con-
ventional water treatment involves a series of steps, including co-
agulation, flocculation, clarification, sedimentation, medium or
membrane filtration, and disinfection (using chlorine/chloromi-
nation, ozone, or UV), aimed at improving the microbiological
quality of water (30, 75). The challenge for the physical removal of
cysts and oocysts in the water treatment process is their small size,
and the general rule is that the smaller the cysts and oocysts, the
more difficult it is to remove them using conventional water treat-
ment technology. E. histolytica cysts range in size from 10 �m to 20
�m, G. intestinalis cysts are 8 to 12 �m by 7 to 10 �m, and C.
parvum oocysts range in size from 4 �m to 6 �m, making C.
parvum oocysts the most difficult of these parasites to physically
filter from water (131, 236). The efficacy of the coagulation, sedi-
mentation, and filtration processes for the removal of protozoan
cysts and oocysts in water treatment systems is particularly impor-
tant and ideally should be preceded by pretreatment methods
such as those aimed at the reduction of disinfectant and disinfec-
tion by-product (DBP) levels (30). Unfortunately, conventional
treatment processes are prone to vulnerabilities that affect their
efficacy in the removal of protozoan cysts and oocysts (30, 358,
364; S. Li, Z. Ran, C. Cui, and Y. Yuan, presented at the Interna-
tional Conference on Computer Distributed Control and Intelli-
gent Environmental Monitoring [CDCIEM], 2011). However,
there is evidence that significant improvement in conventional
water treatment standards has occurred in the past 20 years, with

full conventional treatment effective at reducing the prevalence of
oocysts by a factor of up to 114 (95% CI � 80.64 to 160.78) (64).
A study in Spain found that approximately 40% of samples of the
effluents from drinking water treatment plants contained Crypto-
sporidium oocysts and Giardia cysts after undergoing coagulation,
flocculation, and clarification through sedimentation, filtration,
and disinfection (chlorination) processes and that about 90% of
the organisms in the drinking water remained viable after treat-
ment (48). A U.S. study found that Cryptosporidium oocyst and
Giardia cyst removal across conventional treatment was influ-
enced by the initial pathogen concentrations and level of turbidity.
The study found that the higher the initial amount of contamina-
tion, the larger was the amount of pathogen removal observed
with coagulation by alum, and higher raw water turbidity ap-
peared to result in a higher log removal level for both Cryptospo-
ridium oocysts and Giardia cysts (20).

The U.S. Army recommends that improving flocculation mix-
ing intensities and flow distribution throughout the water treat-
ment plant will assist in the prevention of outbreaks of cryptospo-
ridiosis in keeping with U.S. EPA standards (63). A study
identified that polyaluminum chloride (PACl) is an alternative
coagulant that improves floc formation and sedimentation, pro-
ducing significantly less sludge (63). A pilot-scale test of the elec-
trofiltration process in a drinking water treatment plant was dem-
onstrated to be effective in the removal of waterborne particles of
�4 �m and can be pursued further for large-scale use, with the
added benefit of reducing or eliminating the need for coagulants
and the subsequent residual/scum formation (245). Hence, care-
ful selection of methods for the inactivation of protozoa in water
treatments is necessary, as demonstrated by several studies (30,
358, 364; Li et al., presented at CDCIEM, 2011). However, signif-
icant removal of protozoan cysts or oocysts has been achieved
during filtration processes as water passes through a porous me-
dium or membrane, resulting in up to 1.7 to 3.6 log10 reductions
of oocysts, depending on the filter medium used (75). It is there-
fore recommended that combinations of treatments and multi-
ple-barrier approaches to optimize water treatment through a
synergistic effect be employed (107, 226, 358, 364).

On a small scale, point-of-use (POU) water purification tech-
nologies (such as chlorination with safe storage, solar UV treat-
ment, ceramic filtration, or biosand filtration [BSF]) (338, 380),
employed in small communities or at the household level, are
recommended for reducing risks of enteric infectious agents
transmitted by drinking water, especially for pregnant women,
institutionalized toddlers and elderly, and immunosuppressed
populations (338, 436). On a larger scale, a combination of phys-
ical methods that affect survival or removal of protozoan parasites
should be employed (67, 243). These include freezing, heating,
filtration, sedimentation, UV light irradiation (67, 239), high
pressure, and ultrasound (23). Some experts suggest that ozone is
a more effective chemical disinfectant than chlorine or chlorine
dioxide for inactivation of protozoan parasites in drinking and
recreational waters (161, 469; Li et al., presented at CDCIEM,
2011). Biosand filtration has been used widely, with good effect at
removing the common protozoa in developed countries and at
low cost in developing countries (68, 358, 410, 436). HACCP prin-
ciples have been applied in some countries as a means of providing
potable water free of microbiological health hazards (166). Slow
sand filtration, solar technology, and membrane technology are
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effective methods for reducing pollution from rainwater to be
used as a safe drinking water supply (185).

Sewage and wastewater by-products. The first step in the con-
trol of microbial risks from sewage and wastewater is the institu-
tion of proper legislation and guidelines for those involved. These
should apply even at the household level, where sludge, including
livestock wastes, may be added to compost (217), as well as to
storage and treatment of such wastes (79). Studies have shown
high concentrations of both Cryptosporidium oocysts and Giardia
cysts detected in effluents from WWTPs after going through sec-
ondary and tertiary treatment (48). Due to the potential risks to
public health, recycled wastewater should be approved for use
only under circumstances where other options are technically or
economically infeasible and only for industrial purposes using
separated pipelines (67, 239).

Wastewater treatment reduces the number of pathogens in the
wastewater by concentrating them with the solids in the sludge.
Although some treatment processes are designed specifically to
inactivate pathogens, many are not, and the actual mechanisms of
microbial inactivation are not fully understood for all processes
(155). One study evaluated six sewage sludge hygienization pro-
cesses, including closed reactor and open windrow composting,
and sludge sanitation by quicklime or peat addition. The study
found that while these processes were effective in removing indi-
cator bacteria (for example, fecal coliforms), cysts or oocysts of
pathogenic protozoa survived the majority of these processes
(339). The lime stabilization method has also been used success-
fully to destabilize fecal coliforms, Salmonella, adenovirus type 5,
and rotavirus after only 2 h of treatment in biosolids. However, in
this model, Cryptosporidium oocysts and Ascaris lumbricoides ova
remained viable following 72 h of liming (28).

Several emerging methods for wastewater treatment involve
membrane and filtration technologies. Pressure-driven mem-
brane processes (microfiltration, ultrafiltration, nanofiltration,
and reverse osmosis) are now commonly used (367, 447). Among
these methods, ultrafiltration is quite efficient in the removal of
suspended particles and colloids, turbidity, algae, bacteria, para-
sites, and viruses for clarification and disinfection purposes and,
as such, can be used to replace several of these steps in the conven-
tional treatment process (447). Another method is the use of
membrane bioreactors (MBRs) that combine suspended biomass,
similar to that in the conventional activated sludge process, with
immersed microfiltration or ultrafiltration membranes that re-
place gravity sedimentation and clarify the wastewater effluent,
producing high-quality effluent suitable for unrestricted irriga-
tion and other industrial applications (364). Membrane technol-
ogies are prone to fouling caused by microbe-generated extracel-
lular polymeric substances such as proteins and natural organic
matter. Therefore, next-generation nonfouling membranes with
much narrower pore size distributions than those derived from
immersion precipitation, in addition to fouling-resistant surfaces,
are needed for improved contaminant retention without intensive
chemical treatment and while reducing the need for subsequent
decontamination (364, 367).

Protozoan parasites form part of the microbial ecology in
wastewater that is responsible for purification processes and im-
proving the quality of the effluent, by maintaining the density of
dispersed bacterial populations by predation (254). The persis-
tence of these pathogenic parasites in biosolids emphasizes the
need for guidelines and regulations to govern the use of biosolids

(23). Bean et al. suggested that Cryptosporidium oocysts should be
considered an indicator for evaluating biosolids intended for land
application (28). Australia, the United States, and the European
Union have developed regulations to control pathogen risk arising
from land application of biosolids, based on the concept of mul-
tiple barriers to the prevention of transmission. The barriers are
aimed at protecting human health, food quality, and the environ-
ment from potential microbial and chemical contaminants and
include (i) treatment to reduce pathogen content and vector at-
traction, (ii) restrictions on crops grown on land to which biosol-
ids have been applied, and (iii) minimum intervals following ap-
plication and grazing or harvesting (104, 105, 112, 155, 464). The
availability of multiple barriers, such as constructed barriers,
catchment barriers, and dilution in the catchment area, reduces
the risk of waterborne transmission of protozoa from sewage ef-
fluent (443).

Detection of Protozoa in Water Samples

Detection of protozoa in water samples is important for the mon-
itoring of contaminants and for the prevention and control of
parasitic infections from water. Their small size and dispersion in
water and the difficulty in efficiently concentrating oocysts from
environmental samples while excluding extraneous materials
make it difficult to detect protozoa in water by traditional meth-
ods, with detection requiring well-trained and experienced per-
sonnel (45, 47). The biggest problem with identifying protozoa in
water supplies is that cultivation from cysts or oocysts is difficult
and it is almost impossible to concentrate oocysts from environ-
mental samples while limiting the presence of extraneous materi-
als. As a result, enteric bacteria are traditionally used as surrogate
markers for fecal contamination of water sources (47). However,
the development of new assays and methods for the purification
and concentration of cysts or oocysts by the use of immunomag-
netic separation (IMS) has addressed this problem (375). Cur-
rently, the U.S. EPA and other such bodies commonly use detec-
tion methods for isolation of protozoa, from either large (up to
1,000 liters) or small (10 to 50 liters) samples, involving four se-
quential steps: (i) the filtration of water, resulting in the cysts or
oocysts and extraneous materials being retained on the filter; (ii)
the elution and separation process, involving purification and
concentration of cysts or oocysts by IMS and discarding of the
extraneous material; (iii) staining with specific fluorescent anti-
bodies (FA); and (iv) enumeration using fluorescence and differ-
ential interference contrast microscopy (45, 48, 106, 375). Other
techniques that can also be used for cyst or oocyst purification
purposes include density gradient, saturated-salt flotation, and
continuous flow centrifugation, continuous flow filtration, and
flow cytometry with cell sorting (45, 251, 299). Additional molec-
ular methods are currently available for the identification of pro-
tozoa in water samples by detection of pathogen-specific genes or
SSU rRNA (292, 375). For example, nested PCR-RFLP assays are
used to target different loci (1 and 2) of the hypervariable region of
the 18S rRNA gene for identification of different Cryptosporidium
spp. in water (292). Other PCRs have been developed to amplify
the COWP gene (9). Species of microsporidia have been identified
in various water sources by use of Weber’s chromotrope-based
stain, with positive samples analyzed by PCR (200). Several au-
thors suggest that molecular techniques are the most promising
methods for the sensitive, accurate, and simultaneous detection of
waterborne protozoa, with much benefit to the water industry and
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public health (47, 101), compared with conventional staining and
microscopy (205, 386, 387).

Another approach is the use of alternative bioindicators to-
gether with conventional fecal markers to identify the source of
fecal pollution and associated pathogens in water (353). Water can
become contaminated by point sources (raw sewage, storm water,
wastewater effluent, and industrial sources) and non-point-
source discharges (agriculture, forestry, wildlife, and urban run-
off). The identification of the source of fecal contamination and
pathogens could aid in the management and remediation of water
resources when other control strategies are not feasible (353).
However, some scientists suggest that fecal indicators do not ad-
equately indicate the presence of all fecal pathogens in natural
waters because their presence is affected by different environmen-
tal conditions (147, 241, 310). Since the cysts and oocysts of en-
teric protozoa are hardy and chlorine resistant and can survive for
longer periods in water, these could be evaluated for use as alter-
native fecal indicators (310). The WHO suggests that the spores of
the anaerobic bacteria Clostridium perfringens and Bacillus spp.
can be used to evaluate the effectiveness of protozoan cyst or
oocyst removal by sewage/water treatment, since they are highly
resistant in the environment and their vegetative cells do not re-
produce in aquatic sediments (18).

Evaluating the presence of fecal indicator organisms in water or
the bioaccumulation of encysted protozoa in shellfish has value
for identifying source attribution for surveillance and in outbreak
settings (115). Bivalve shellfish have been used as bioindicators of
fecal protozoan contamination in water bodies. For example,
Cryptosporidium and Giardia in clams (Corbicula fluminea) have
been detected by PCR and DFA assays (270) or IFA (148). When it
is not possible or practical to test for individual protozoan para-
sites, it may be useful to use a combination of fecal indicator
source tracking methods to enhance identification of contami-
nants of public health interest in surface waters (121, 270, 353).

CONCLUSIONS

Enteric protozoa continue to contribute to the burden from pre-
ventable infectious diseases affecting humans and animal health in
industrialized settings. Giardia intestinalis, Cryptosporidium spp.,
and Entamoeba spp. are the most commonly reported protozoa
associated with enteric infections and are associated mainly with
food- and waterborne outbreaks. Others, such as Cyclospora cay-
etanensis, Dientamoeba fragilis, Balantidium coli, Cystoisospora
belli, and Blastocystis spp., are emerging as important causes of
illness, with serious implications for travelers to developing re-
gions, immunocompromised populations, and young children.
Although public health measures in most developed countries are
more stringent than those in developing settings, minority groups,
institutionalized persons, and the immunocompromised remain
at extremely high risk, which can be extended to the rest of the
population, and hence they should be considered a public health
priority. Furthermore, the challenges of protozoan diseases trans-
mitted by food, water, and animals are expected to increase as a
result of complex interactions between human and animal hosts,
fueled by the emerging effects of climate change and urbanization
and the need to increase food production, reuse of gray water, and
biosolids. Advancements in molecular diagnostics and the use of
molecular epidemiology have the potential to identify previously
undetected species and zoonotic serotypes that cause illnesses in
both animals and humans and are useful for surveillance and out-

break control. Although there is much evidence for some protozoa
as a cause of illness in humans and/or animals, there is still need
for the development of better diagnostic methods for the rapid
and sensitive detection of others. There is therefore a need for
much more research into these issues to better understand the
potential impact of climate change on the incidence and preva-
lence of parasitic diseases and how governments can act now to
mitigate their effects. The management of protozoan infections in
this complex environment, coupled with the projected effects of
climate change, will require an increase in the allocation of re-
search and development funding and a multidisciplinary ap-
proach.
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